Indian Statistical Institute II Semestral Examination 2008-2009

B.Math.(Hons). II year Analysis IV

Date:04-05-2009 Duration: 3 Hours

Instructor: B.Bagchi

Max Marks 100

1. For $k \in \mathbb{Z}$, let $\varepsilon_k \in L^2([0, 2\pi])$ be given by $\varepsilon_k(x) = e^{ix}$. For $f \varepsilon L^2$, let $a_k = (f, \varepsilon_k)$ be the Fourier coefficients of f and let b_k be an arbitrary complex number $(k \varepsilon \mathbb{Z})$.

- a) Show that $||f \sum_{k=-n}^{n} a_k \varepsilon_k|| \le ||f \sum_{k=-n}^{n} b_k \varepsilon_k||$ for every $n \ge 0$.
- b) Show that equality holds here for some n only if $b_k = a_k$ for $-n \le k \le n$. [15 + 5 = 20]
- 2. a) Define the normed linear space $L^1([0, 2\pi])$ carefully and show that it is a Banach space.
 - b) Show that it is not a Hilbert space, *i.e.* its norm does not "come" from any inner product. [15 + 10 = 25]
- 3. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a continuous function which is periodic with period 2π .
 - a) Show that the Fourier series of f converges to f in the sense of Cesaro, uniformly on compact subsets of \mathbb{R} .
 - b) If, further, f has continuous derivative everywhere, then show that the Fourier series of f converges to f uniformly on compact subsets of \mathbb{R} , in the usual sense. [15 + 15 = 30]
- 4. Let X be a metric space with $\sharp (X) \geq 5$.
 - a) If every five point subset of X embeds isometrically in \mathbb{R}^2 (with euclidian metric) then show that X embeds in \mathbb{R}^2 .
 - b) Give an example of a metric space X with $\sharp(X) = 5$ such the every proper subset of X embeds in \mathbb{R}^2 but X does not embed in \mathbb{R}^2 .

$$[10 + 15 = 25]$$